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Uncertainty Modeling and Possibilistic

Approach to Parameter Estimation

Abstract

A general basis is established for modeling uncertainty and concepts

of vagueness through a combined possibilistic-probabilistic approach. A survey

of the connections between probability theory and fuzzy set theory is undertaken.

New results concerning parameter estimationgiven both Etatistical and vague

or natural language information , are presented. New discoveries

involving possibility measures and linguistic probabilities are aisw demonstrated.

Some specific topics treated include analysis of conjunction and disjunction

operators within a general setting, relationships between possibilistic and

random set operators, and asymptotic behavior of fuzzy set estimators.

Application to the development of a correlation/tracking technique - PACT

Possibilistic Approach to Correlation and Tracking - is presented in outline form.
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1. INTRODUCTION

This report is the final paper during FY-82 for the project "Combined Possibilistic

Approach to Parameter Estimation" under the aegis of the Naval Electronic Systems Command,

ELEX 6121, Task Area XR-021-Ol, Program Element 61153 h

Previously, a quarterly progress report was issued by the first named author

( see &C70dm744). Because of the delay in funds for the project, a reduced work effort for

FY-82 has resulted. Consequently, the second, third and last progress reports have been

eliminated in favor of this encompassing summary report for FY-82.

In the first quarterly report, the nature and range of the associated NOSC IR/IED

PAUT Project (Possibilistic Approach to Correlation and Tracking) was outlined. The project

is centered about the PACT algorithm. Briefly, the PACT algorithm utilizes probabilistic

and fuzzy set or possibilistic concepts in treating statistical and semantic based infor-

mation for the data association and tracking problem. Basically, the algorithm operates

upon a collection of information attribute error distributionsor equivalently, matching

tables and a collection of prechosen (relevant to the given scenario) inference rules.

The basic output of the algorithm is the posterior distribution ( in either the classical

statistical or fuzzy set sense ) of correlation ppssibilities between any two given candidatE:

track histories which are suitably updated.

The scope of the task which this report addresses is to define fully the inter-

relations of possibility and probability theory so that practical quantitative applications

can be developed. This obviously relates directly to the PACT Project. Rigorous techniques

must be developed for dealing with estimation problems which contain within their formulatior

further connections between possibility and probability theory. Specifically, this includes,

as olined in a previous communication ( see Schuster 12-J)

(a) Dctcrmination of proper possibilistic conjunction and disjunction operators

(b) Development of relations between fuzzy set operators and ordinary set ones



(c) Derivation of a sampling theory which parallels random sampling theory

for both large and small sample sizes.

It should be noted that the first quarterly progress report eAdressed in part the

last mentioned issue.

This report consists of a main overview text written jointly by both authors, which

contains : An introductory section (1) scoping out the paper's purposes; A section (2) con-

cerning motivation for the analysis of fuzzy sets, random sets, and their connections

through the presentation of a general example followed by some discussion; A section (3) on

the framework of analysis consisting of the topics : internal vs. external modeling, preling-.

uistic concepts and ideas obtained through natural language, concept of fuzziness as a prima-

tive, development of general logical systems and ambiguities, relationshipf between fuzzy

sets and their operations and probabilistic concepts. A section (4) on logical ( or fuzzy

set) systems centering about a procedure for choosing a particular system; A section (5)

concerning Manes' important generalization of probabilistic and min-max fuzzy set systems,

with a new result characterizung Manes' system relative to general fuzzy set systems; and

finally, a section (6) concerning open issues and general conclusions.

The first appendix (I.R. Goodman) is a thorough mathematical survey of the various

relations betieen possibility theory and probability theory. In section 10 of this appendix,

there is a series of new results concerning parameter estimation, for any given arbitrary

combination of probabilistic or possibilistic input descriptions. The second appendix, part

one (I.R. Goodman) iz an outline - in slide form - of the PACT Project, a direct conse-

quence of earlier and ongoiriwork in parameter estimation (as mentioned above in the first

appendix). The second part of Appendix B ( I.R. Goodman) is essentially the same as the

latest paper summarizing the theoretical structure of PACT, which has been submitted for

inclusion in the Proceedings of the Fifth 1vT/ONR Workshop on C3 Systems, 1982. The third

part of Appendix B (I.R. Goodman) is a brief summary of basic fuzzy set/random set theory

for background purposes. Finally, the last two appendices (Appendix C and D ) (H.T. Nguyen)

are surveys and analyses of two topics of key interest: possibility measures and linguistic

probabilities.



2. MOTIVATION

Consider the following example -

Example 1.

Two target histories of interest are being considered by a sensor operator

for poslible correlation. He receives information labelled as A1 , A2 ,A 3

Al - two dimensional position observations with assoviated updated error

ellipses of some prescribed confidence level

A2 - reports concerming tentaive classification of targets,such as Filipino

Type Q4 or Liechtensteinian Type R7.9

A - visual sightings including partial identifications, clues, hull lengths,

mast shapes , etc.

Clearly, if information categories A2  and A 3 are ignored, statistical

hypotheses testing theory may be applied to A1 to es.ablish a standard wvtghted metric

(Mahalanobis distance - see e.g., Rao, 13 ,Chapter 9) for testing for correlation

and determining the level of correlation (statistically) between the two track histories

of interest. Rough gating procedures could then be added to see if A2 and A3  confirm

or perhaps contradict the crucial geol .cation criterion results for A1 . (See the

Naval Ocean-Surveillance Correlation Handbook il lt53 ) for a listing and descriptions

of tracking/correlation systems utilizing the above procedure.) But, how should gates

or their softer distributional analogues be systematically established for A2 and A3

and integrated with the results for A1 ? Furthermore, can we use human in-field oper-

ator experience to relate in some way information matches , mismatches, and everything

in between, occurring for categories A2 and A and A1 , as well, to correlation levelsl

This problem will be solved in detail later in the report: Indeed, this example, is a

simplification of the problem that the PACT algorithm addresses. (See Appendix 9.)

In the above example, the parameter of interest is the true correlation level

-' -



Other examples of related nature- both military and non-military- may be

found in Goodman t] . The above example motivates us to formulate the following

scheme for dealing with parameter estimation problems. We need to:

(i) Categor ze the incoming information into subcategories as A1 , A , A3 J. . . .

These categories should be carefully chosen for nonredundancy. Further analysis

of their taxonomy should prove useful.

(2) Establish a rigorous and systematic framework for quantifying information. This

may be identified with the problem of determining the natural domains of attributes

A1 , A2 , A3 , . . . . For example, in Example 1, A1 's domain consists of all

ordered pairs of 2 by 1 vectors and ellipses, while for A2 , perhaps simplified

labels such as Q4 , R7.9 , S6 , etc. will do.

(3) Derive matching level tables or equivalently error"distributions"(in a sense

possibly extending the classical statistical ones) that can occur between what

is reported or observed and what the true values are for each attribute category.

(4) Determine relative weights of importance between the various attribute categories.

For example, how much will we tolerate a total mismatch with respect to A2 , when

a relatively good match occurs reLti to A1 ?

(5) Establish logical connections - based on either physical considerations or human

operator experience - between the various information categories. These connection

could be either in the form of inference - modus ponens rules or posterior

distributions constraining or delineating the unk~own parameter of interest.

(See Goodman [7] - [9] for earlier outlines for approaching parameter

estimation when some of the informational input is in linguistic based format. See also

1lO] , section 10, for extensive theoretical results. Note that essentially, Appei.dix A

of this paper is t101 , while Appendix B, part two is 19] .)

More generally, we might ask: How do we model uncertainty and conclusions

concerning this within a general framework?
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Obviously, once we remove ourselves from "hard" statistical information, subJectiv'f

ity and personal interpretive variation play important roles. The logical connections

mentioned in item 5 above are usually given in the form of modus ponens inference rules

or posterior distributions. In the latter case, at least for the classical statis)rical

situation, Bayes' Theorem is usually invoked with respect to more basic conditional

data and prior distributions. For the former cave, predicates restricting or describing

the unknown parameter of interest and other parameters or values determined through

various attribute categories are related through an "if ( ) then ( ) " structure.

Schematically, we have the restrictions on unknown parameter Q , say

4 (Q Iz " If P(Z) then V(Q) "

The lefthand side represents the posterior distribution (possibilistic or ordinary -

see Appendix for clarification and explanation of possibilistic distributions )

of Q given data Z , while the righthand side represents the inference rule " If P(7)

is true then V'Q) must also hold " , where P(Z) is some predicate describing Z and

v(Q) is some predicate describing Q. For example, let Z=(z(i),z(j)) , with Z(i)

(Z( i), Z(1)) and Z(J)=(ZI(J),z2
( j)) , the superscript i referring to data for

track history i and j for track history j ,the subscript 1 referring to attribute category

A1  and 2 referring to attribute A2 " Then , we may let , for example,

P(Z) ="(iM and Z very mildly ( or to a low level) match

and Z2 (i) and z20J) strongly match

4,''

V(Q) = correlation level Q is high at least

The words "very mildly' , "strongly" , "high at leas4" could, if sufficient information

were present, be replaced by more quantitative values such as l '? 2 ; < , where

each o( is some number between 0 and 1 indicating the intensity of matching level.

k
(Again, see Appendix B for clarification and elaboration of this idea.)
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It should be noted that many posterior distributions and/ or inference

rules may be present which delineate the possible values of Q given Z

With the problem modeled according to the above mentioned scheme, the next

basic question concerns the actual Mathematization or translation of the problem into

symbols which can be manipulated according to some established calculus. How do we

translate the problem into a consistant rigorous framework? What means do we use to

translate the atomie or fundamental inforration partsf Hou are compound informational

parts to be exhibited through appropriate choice of operators ? Which parts of the

problem are more amenable to ordinary statistical / probabilistic analysis and hence

modeling and which parts to possibilistic/ fuzzy set modeling? Certainly,natural

language descriptions appear more easily put into fuzzy set structure than classical

probabilistic ones . (SeegIfrawrv,) On the other hand, even concepts that may appear

statistically describable may also be modeled via fuzzy set theory. Fcr example,

classification often entails rather overlapping possible values or classes, due to

the vector of subcategories in which an object has to lie to qualify to be in a par-

ticular class. Indeed, some classes may actually be subsets of others. In addition,

it is possible that the exact definitions for the classes themselves are vague and

moreover the relations between the classes may not be clear. For example , A2  could

contain C and D , which are defined by knowledge of frequencies, ship size, shape,

and number of engine emitting energy sources on-board. Overlaps between C and D may

abound. Thus it is not appropriate to considei o'dinary probability distributions

over A2 , since the elementary events C and D , among others for example, are not

distinct or disjoint. Rather, because of the overlapping flavor of A2 , either

random subsets of A2  or more generally certain equivalence classes of random eibsrts

of A2 ( equivalence here is in the sense of having the same one-point coverage function

- see Ll ) or (the same as ) fuzzT sets.

Analysis of uncertality in its most general form requires modeling and

-. 7-



measuring imprecise concepts- expressed by natural language. By natural language, we -mean

that medium through which all human ideas are formed including classical set theory

and two-valued logic as well as more ambiguous concepts including "tall" , "happy"

Gaussian distributions , uniform distributions, "within 3 units of" , "close to"

almost all" , there exists" , approximately a subset of to degeee 0.6 " " member of

set G " , approximately a member of H to degree 0.4" , etc.

The difficulty with natural language modeling used asdirect tool for analysis

is -he disorganization of the field. Despite the heavy 'nfluence of pioneer linguists

Sapir, Bloomfield , Jespersen, Boas, Whorf ( and the famous Whorf-Sapir hypothesis on

language restricting ".he thoughts of the native Lpeaker) and the later work of formal

linguists Hiz, Harris, and Chomrsy , among others ( see [13)- [1'] ) , what is evident I

is that a unified theory of linguisticL entailing both semantics (mcaning) and syntactics

(operations, form) is needed which is suitable for complete mathematization. One candidatei

approach is due to Zadeh U using fuzzy set theory. ( See also the work of

Grenander, for a different perspective C22 * )

Other approaches to the modeling of uncertainties which do not deal d.-rectly

with the modeling and emulating of natural language, but do treat the infzrmation content

content contained therein, include

1. Probability theory, including random variables, random functions, and more J
recently, random sets.

2. Multivalued logic/ truth theory and the ensuing set theory developed from it

3. Fuzzy set theory / possibility theory,

4. Flou cT multiple set theory, This includes interval and sensitivity theory.

5. Extremal entropy techniques. This area could optionally be treated under

probability theory, because of its close relationship.

6. Dempster-Shafer uncertainyy theory- belief, doibt, plausibility measures



3. BASIC FRAMEWORK OF ANALYSIS

The basic analysis of uncertainty modeling revolves around a series of

general topics

1. Internal vs. external modeling.

In the internal approach, explicit analytic relations are sought connecting

one approach to uncertainty to another. For example, Negoita and Ralescu, through their

Representation Theorem ( see [2 1] ) tied up very neatly classical fuzzy set

operations with flou set operations. As another example of the internal approach,

Goodman, Orlov, Nguyen, and Hbhle, among others ( see 112), 2-224]) demonstrated

direct connections between random sets and fuzzy sets and certain of their operations.

In the external approach, unifying generalizations are sought which reduce to

various approaches to uncertainty modeling. Here the work of Hirota [25] , Scefe[2&

Gaines [210) may be cited for developing structures that simultaneously geseralize

probability and fuzzy set systems. The most far reaching work in this area is due

to Manes L2. j who derived a collection of axioms which not only generalize

probability theoryp4 mum-X fuzzy set theory, but a whole host of other systems,

including topological neighborhood theory and credibility theory. (See section 5 for

more details on Manes' work, where it is shown certain restrictions must be imposed on

fuzzy set systems to satisfy Manes' axioms.)

2. P concept and d eas obtained through natural a&_n .

This topic concerns itself with the ability of natural ianguage to express

ideas accurately and succinctly as well as the forralizihp, or mathematizating of

natur&J language for dealing with uncertainties. Comments vere made previously on

the lack of progress in this ertremely difficult area. Ironically, we can expresu

within a few wordsideas such as love, happiness, temporal vague concepts, am-

biguous descriptions - which are perfectly understandable to another reasonably

educated speaker , as well as various combinations and operations on this ideas -

yet cannot express this concepts easily within a rigorous framework in terms of all

-1-



the component primative or atomic parts. On the other hand "complicated " mathematical

terminology , sucb a is typically found in category theory or algebraic topology or

deductive logic studies, really express concepts far simpler in nature than what lan-

guage can express. ( Of course, we cannot discount the abi]lty of language to represent-

albeit how awkward- pure mathematical concepts .)

3. concept of fuzzines as a primative

It is the firm conviction of both authors as well as Zadeh and others ( see

27.3J ) that because mathematical analysis has shvwn that fuzziness is

a weak form of randomness , i.e., a looser type of randomness without the constraints

of the probability distribution entailed, fuzzy sets and their operations are a natural

tool to express linguistic concepts , rather than rrcbniiit- distributions. Thus,

the fundamental idea of a point partially belonging to a set with degree specified as

some number between 0 and 1 may well be taken as an intuitive concept representing

the possibility that the point is in the set, rather than the probability it is in the

set ( the set now considered as a random set ). (See Appendix A fot the develcaent

cf eYsplicit relations between fuzzy sets, random sets, and random variables. Essentially,2

fuzzy set -with similar results valid for many fuzzy set operations- is equivalent

mathematically to the class of all random sets which have in common the same one-point

coverage function, namely the membership function of the given fuzzy set.)

4. eyelopment of genera logical (multivalued logic) sYste . Ambiguities.

This topic is a basis for further work in developing unified approaches to

fuzzy set modeling. Too often in the past ( see fur example, Dubois and Prade t II )

myriad distinct fuzzy set systems have been proposed for use in modeling uncertainties,

without paying attention to the inherent ambiguity of defihition present. More specific-

ally , consider the problem of defining an appropriate concept for the intersection of

two fuzzy sets. Originally, Zadeh (I76S[301) proposed that minimum as an operation on

the respective membership functions was the most appropriate. Later, mibriam and Giertz

-10-



C3 11 were among the first to justify on a rigorous basis the use of minimum as an

intersection operation. ( See ahso the survey of Klementon rigorous characterizations

of varmous fuzzy set operations, including intersection, union, complementation.) However,

the justification required certain constraints ( mutual distributivity ) which are not

realistically required within a general setting. Other definitions for intersection resulted

i.cZ t.ding! the use of product - also justified, with again appropriate restrictions. (Again,

see the Dubois and Prade survey WI .) Clearly, minimum and product, while both extending

ordinary intersection (relative to zero-one type membership functions ) are considerably

different. Which one to choose or not? The answer to this problem may well lie in defining

an entire class of fuzzy seL operations - not just a single operation- which in the most

natural way abstract the ordinary concept of intersection. Such a class has been proposed

(see Klement [11 ] and Goodman j2?1 ) , called the class of t.-norms ( a term "oorrwed

from a branch of probeblity totally independent of fuzzy set theory, developed by Schweitzer

and Sklar [ 3 S ) based on earlier proposals of Menger '3 )" these operators are

symmetric, associative,usually assumed also continuous, obey certain boundary conditions

for compatibility with prdinary intersection, are nondecreasing in their arguments, and

numerically arm bounded above by ( the largest t-norm) the minimum operation. (See ,Alain

CB3 for prop ries) See also Haack [35 and Rescher [13$ for listings of multivalued logic
systems where special cases of t-norm and t-conorm operators are used foitt "and"or'".)

Similary, other classes of definitions may be developed for union (t-conorms)

complement (involutions) , and in turn these generp) d.f*nitions, * la multivalued logic

may be used to develop general compound fuzzy set operations and relations, including *iJc&

the quantifications "for ali"Wnd "there exists" , as well as subset and arithmetic (in a

fuzzy set sense) relationships. In addition, this leads to the general concept of conditional'

fuzzy sets ( analagous to conditional prcbCLlity distributions ) , fuzzy set Bayes' theore.,

and in turn, a theory of small and large fuzzy set sampling . (See Go0MAA [37 .

Even with the general unifying approach as described , problems of ambiguity of

definition still arise. For example, the fuzzy set quantifier "for all x in X, ( ) holds"MY

be definable by the relation , as expressed in English, " ( ).& ( ) & ( )&''& ( ",

-jl l-
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where ( ) represents some relationship such as "if xj is in A then xjis in B ", x;varyiVg

over the universe of discourse X , and where A and B are fuzzy sets predetermined here.

On the otherhand, tne same concept could conceivably be expressed directly by a unary

operation on )hich is a fuzzification of "for all" , I.e., a monotonically increasing

function over the unit interval which rises sharply tow'ards one near domain value one and

Which otherwise is zero before these values. (similar monotonic operations are used in fuzzy,

sEt theory to define "almost all", "at least most", etc.) It is easy to see that in general,

though again the two concepts extend the ordinary meaning in zero-one set theory of for all,

they represent two different approaches to the universal quantifier. Both definitions, it

should be noted, depend on the general t-norm definition of intersectton(through & ) , the

second depending as well -through the "if C ) then(Y'relation on the general definition of

uzion and complement. Which one to choose? In turn, the problem of appropriately modeling

a particular fuzzy set with respect to the corresponding original numerical or linguiatic

concept also arises. What individual variation of response should be allowed? How specific

should the universe of discourse be? For example, when considering the fuzzy set "long ,

do we consider ships, cars, both; is there some grand scale where "long" can be quantiativelyI

established through its membership function , other than the obvious fact that it is some

monotone increasing membership function? One answer to this problem is analagous to the

problem of modeling an appropriate probability distribution: parameterize and then choose

the most appropriate value of the parameter-and hence membership function from the collection

through some estimation technique based on empirically obtained evidence.

5. Relationships between fuzzy sets and their operations and probabilistic concepts.

The details of these relationships are spelled out in Appendix A .Ptecalling the

last comments of subsection 3 above, given a fuzzy set , it may be expedicious to choose

one particular random set equivalent to it. WicId une to choose? How much information loss

occurr when one random set is chosen as opposed to the entire equivalence class?

-12-



Could some mathematical criterion be used to weed out this random set such as maximal entropy?

What about semantic content? For example, condider the simple fuzzy set representing "tall".

Clearly , this also is a monotone increasing fuzzy set , i.e., the membership function must

be monotoniualy increasing. However, it can be shown that among the equivalent .andom sets

to any such monotone increasing fuzzy set (see e.g. [2?7 ),two very different ones can be

explicily shown: the so-called SU -type ,which is a random interval with right end point fixed

at the maximal universe of discourse element , and the T-type, wh. a is very broken-up in

structure and is not any kind of interval. Clearly, the first is more compatible with the

concept of tall- if one point is covered randomly by a random set representing "tall"

shouldn't all points tc the right, i.e.., having larger heights? Similarly, there may be a

most natural choice of random set representation for a given fuzzy set, when the latter has a

membership of some prescribed type, such as unimodal, continuous, discrete, step-form, etc.

In z teiated vein, we may pose the question as how should semantic based informa-

tion , and thus fuzzy sets, be combined with independently derived random set or random vari-

able information concerning-a common unknown parameter vector ?

Finally, it is of importance to ascertain, through the relationships mentioned

above, if random set theory could be used to derive results for fuzzy set theory

A general schematic outlining the various approaches to uncertainty modeling

is given in Figure 1.

-13-
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4. LOGICAL OR FUZZY SET SYSTEMS : CHOICE OF A PARTICULAR SYSTEM

All of fuzzy set theory can be developed in a natural way directly through homomorphic-

like evaluations from multiple valued truth theory . In turn, multivalued truth theory can

be motivated through natural language analogues consisting of attributes and linguistic

operators.

In natural language, there exist many compound attributes and operators built up from

more primative ones. Three connectives play a very significant role in natural language des-

criptions : "not" , "and" ( usually denoted by & ), and "or" . It can be shown that all other

logical connections can be reduced to these in classical two-valued logic. Indeed,

theoretically, all operations can be reduced to one operator , Shefer's stroke operator or

alternative denial(see 38 ,sect.l.5).More recently, it has been shown (see 3 ) that for

multivalued logic systems, a similar reduction is also formally valid. In a8ycaseit is natural

to begin with a small collection of primative logical connectives, add procedures for

compounding them, and denote the more important results by particular terms. We will call

the triple of operators ( not, & , or ) a logical ( or'fuzzy set ) system. The interpretation

of this triple of operators - with some collectiontofpredicates or sentences subsumed on

which these operators act- will be at three conceptually different levels : linguistic

multivalued logic, and fuzzy set ( or numerical). The operator not is a unary opera*or on

while & and or are binary operators over 1. Difficulties arise as tG the numerical evaluatiou

of these operators, at the fuzzy set interpretation. For example ( as stated earlier in this

text-) & could yield both product and minimum as interpretations at tte fuzzy set end. Which

to choose or other operators to censider? As mentioned previously,.a basic choice of per-

missible operators for a logical system is for not to correspond to some decreasing involutive

operator, while & corresponds to some t-norm and or to some t-conorm. Other choices for

interpreting & and or may lose the flavor of what we really mean by "and" and "or" . For

example, it is possible that the weighted 5um operator ( see [2,e. ) - which is its own

DeMorgan dual (in general, & and or can be interprted so that they are not in the classical

De~organ relationship ) - could be chosen in place of & and.or for a logical system , But

note that this averaging type of operator is neither a t-norm nor a t-conorm.

-I5-



Choice of a specific logical system - i.e., a specific triple of admissible operators

for not, &, or - should be based on some combination of pradtical considerations an& theoret-

ical basis. It is shown in Appendix A , Theorems 10-12 , that the subfamily of semidistribu-

tive t-norms and t-conorms ( DeMorgan property may be assumed ) provides a theoretical basis

of operators to choose from in setting up a logical system , when not is associated with

the fuzzy set operator 1-(.) . This basis essentially allows weak homomorphic identification

of arbitrary combinations of the t-norm and t-conorm operators in question,as well as a large

class of fuzzy arithmetic and functional transform operators involving these t-norms and t-

conorms, with naturally corresponding ordinary intersections and unions relative to ranu&-"

sets (equivalent in the usual one point coverage sense to the original fuzzy sets and deter-

mined also by the choice of t-norm and t-conorm,with respect to jointness of distributions).

With the theoretical basis established firmly : we should only in general seek those t-

norms and t conorms which are semidistributive , we must use the 3truture of a given scenario

to further define the appropriate choice for the logiual system to be used for the modeling.

In review ( see [2 ), the semidistributive family of t-norms consists of all

discrete weighted sums of the form

m+l m m+l m21k*F + 2: %k G
& Z k +.G O~ck I Ok -' ; Zok + D j

k=l k=l k=l k=l

where the wieghts

0k d Ak - bk-l ' k dbk _ k ; k= 1,2,..,m+l

Ob o < a, < b, < ab 2  -- m m _< am+, =1 fixed arbitrary constants ;

each Fk is that bivariate probability distribution function corresponding to 
the random vector

(i.).,where U!=U2 is urifcrr.y distributed over the interval [bk-l,ak] , and hu
\u2

Fk(q y)) ~& 0 iff y is in the square [bk _1 , a X [b. l , A in which case

FR((Y ) = mln( (x-bkl)/(ak-bk I ) , (Y-bk-l)/(akbk-1))

k- y



each Gk is that bivariate probability distribution function corresponding to the random

vector(Ui) , wnere now U1 and U2 are statistically independent identically distributed

uniformly over the interval lak , bJ I, thus + 0 iff is) in the square

[ ak , bk] X Ck , bkI , in which case, -

Gk( y ) =((x-a,)/(b k-k)) - ((y-a)/(bk-)

Note the important special cases 7& = F 1 =min and & = G =prod.

Suppose now that a given scenario holds so that operator (t-norm) I/& is obtainable

at leasyr approximately empirically through its use , by a tabulation of its values over

the unit square. In general, this empirically obtained function, denoted bye_ is not a
0 -&semi-!Stributive t-norm. However, we can approximate by semidistributive t-norm,

deterinin theidcoefficients no
determining the coefficients ck and (k in the expansions given above by matching moments
to any degree desirable between V& and t& . Since the moments of F and Gk are partic-

ularly easy to ohtain, we immediately obtain tht: fundamental relations

(l(~+~+1)e '*I +Y 2 +i -+2+

Y , (':i " r )  =  (1/( d 'i +' +))oT (ak Y_ +Y +1 -  )I+ 2 +
k=l k-l

' ((by'+'- Y1 +l )b Y2+1l - Y2+1 b
+ l/((61+l).(>2+l) 7 , k - ).(k -ak)

k=l
0

where the ( 1 'Y 2 ) th central moment for % is given by

Y , d d y d x,y)

over all
,y in the

unit square)

obtainable by an approximating discretization , for some predetermined size of m and choice

of equalities to hold in tht above equation for the ak's and bk's ; andy, allowed to

run separately over the integers O,l,2,..,q , for some appropriate choice of q.

We then seek to solve tJhe above fundamental relations for the coefficients ak and bk

-17-



in terms of the empirically known ( 2 ) ' s "

For earlier empirical approaches to the determination of A and'O r  , see

the work of Zimmermann [402 and Hersh and Caramazza [41



, BASIC CRITIQUE ANu SYNOPSIS OF MANES' GENERALIZED UNCERTAI1TY TECRT

Manes (2] has recently written one oi the most important apers taking the

external approach to the analysis of uncertainty modeling. (See the earlier V7ipers of Gaines

and Hirota tlS) for much more restricted approaches to the development of systems

which extend both probability and fuzzy set concepts.) Because of the paper's great import-

ance and relative difficult format, a synopsis with some critical comments will be presented

here.

In summary, Manes derives a general class of "fuzzy" theories which reduce as

special cases to finitely discrete probability theory, Zadeh's original ( see (303 ) fuzzy

set system (1-(-), min, max), topological neighborhood theory, credibility theory, and other

approaches to the modeling of uncertainties. (To avoid confusion with fuzzy set theories as

discussed in the overview, Manes' models will be designated as "fuzzy" .) Manes' theories

are characterized by a triple of functions satisfying three basic axioms. The first function

assigns to any space a corresponding space of geheralized distributions over that space ( the

term "generalized" to be made more specific for each particular system satisfying the axioms)

The second function imbeds or id2ntifies any given space with the subclass of mass-point

distributions from the associated space of generalized distributions. The third function

extends conditional generalized distributions -with index set X, say,and distributions in

the associated space T(Y) of space Y - to operators taking initial distribution spacelTo)u

to T(Y) . As natural as the first two axioms are ( see below ) in determining the essence

of the above concepts, the third axiom, an associative-like condition imposed on the extensions

function (i.e., the third function described above) may be too restrictive. This is because

of the following characterization we have'shown : Let F = (1-(.), I& , 'o r ) be a given
T or

fuzzy set system ( recalling that 1& is some t-norm and is some t-conorm), with 0 being't
& or

membership tunction binary relation composition relative to F . Then F is also a "fuzzy"

theory with the mapping P.G as a function of all binary fuzzy @et relation membership

functions 4 being the same as an extension function in Manes' sense , iff I& is right

distributive over "' As a consequence of this result, a whole host of fuzzy set systemsore

47-b



including the important system (i-(.) , prod, probsum) which plays a key role in the weak-

homomorphism theory connecting fuzzy set operations with those ordinary ones cn random sets

(see Appendic A ) , do not satisfy the required third axiom of Manes' "fuzzy" theeoies,

although it is easily verified that the other two axioms are indeed satisfied always by any

fuzzy set system; Consequently, the elegant resultt obtained for Manes' theories do not apply

to non-right distributive fuzzy set systems. The natural problem that follows is how to change

the requirements of Manes' third axiom so as to accomadate a larger class of fuzzy set systems

Next, a brief treatment with some analysis-of Manes' results is presented.

A'fuzzy" theory is a triple 7= (T,e,#) of functions so that for all well-defined

spaces X,Y,Z

(i) T(X) is the space of generalized distributions associated with X

(ii) e(X):X--*'T(X) is the special function called the imbedding function ot X

into the mass-point distributions in T(X)

(iii) # : T(Y) X __ T(Y) T(X) is the extension or lifting operator , noting

that the dependence of # od X and Y is not denoted here.

The axioms 7 must satisfy are :

For any spaces X,Y,Z and mappings c :X-T(Y) , :Y---T(Z)

()#( )) - e(X) = :

(2) #(e(X)) = identT(X)

Zadeh .Fuzzy Set Theory Example - F (i-(.), mn, max)

T(X) = [0,1] X and (e(X) (x)) (y) = (Kronecker delta) ; xLX,yEY .'b.

(O (4R)'(A ))(y) = max (min(4R (x,y) , A(r )))= R (y)'

E xE X 
(YA

for any fuzzy oinsTy relation R on XX Y and any fuzzy subset A of X ;all yc Y

Finitely Discrete Probability Theory Example

T(X) = 7 p 1 p is a probability function over X with finite supportl

-20-



(e(X)(x))(Y)=$~ o ny f orall x c-x I Y

(#q Z ( q(y I x) P(::)) =E( q(y
xGX

for all conditional probability functions q over Y , conditioned on X , and all

p E T(X) , with random variable 'f distributed according to probability function p,

Theorem A k Goodman-Nguyen, 1982 )

Let F = ( l-(-), 4' , ' ) be a given fizzy zet lystem with 0 denotin,
& or

the fuzzy set binary relation composition relative to F. Thus ( see also

C7 1 for motivation via multivalued truth theory) ® is defined dually as

(y)
(A(S Y))

"Wor ' R(xY', IA(x)))

'nd let

(e(X)(x))(y) x , for all xEX , yrY , X, Y arbitrary

T(X) - [ 0 ,1 3X forall X

and fiit.1I'j aeVifl j
(#(OR))(PA) (PRE) OA ,for all fuzzy binary relations R on X KY

and all fuzzy subsets A of X

Then

(1) F satisfies Manes' axiomc (1) and (2) for "fuzzy" theory

(2) F satisfies Manrs' axiom (3), and hence is also a "fuzzy" theorY, iff Y& Is

right distributive over Vor , i.e.,

, ( a, i ' (b, c)) =
1 'o (ab,), &' (a,c)) ;all a,b,c E [, 1.

or - -



Proof of Tiic(rc:.i A:

Result (1) follows from straightforeward algebra.

For resnlt (2)

The lefthand side of Manes' axiom (3) is evaluated as , for any 1 =' S '

and where R is a fuzzy relation LI XXY , S is a fuzzy relation on YXZ , and A is a
A'

fuzzy subGet of X, and z E Z is arbitrary

xCX YY

Similrly, the righthand side of axiom (3) becomes

Y Y xCX

Iff& is distributive over Yor I then by simple induction , the defining equation for

right distributivity may be extended to arbitrary number of argluments for the IT or operator,

In turn substituting this into the above exprewsions for I and II yields the relation

I(R,SAiz) = II(R,S,A;z) or PAxtRxy) (y))

For the converse, if axiom (3) is satisfied , then for all R,S,fb,z as above, we must f
have I(RSA;z) = II(R,S,A;z). Choose in particular A=X, Y=.y) , with all other variables

arbitrary. It follows immediately that right distributivity holds.

0

As a consequence of the above thprem, Zadeh's original fuzzy set system is also a

"fuzzy" theory t as is the non-Demorgan system (1-(-), prod, max) . On the other hand, the

(DeMorgan) fuzzy set system (1-( .),prod, probsum), and extending this, any semi-distributive

fuzzy sct system (except for the boundary system (1-(.), i.in, max)) in general will not be

right di-tributive, Pnd hence will not be a "fuzzy" set theory. Since semi-distributive

fuzzy set systems are the main link in the weak hosomorphism theory connecting fuz7.y: set

theory with random set theory ( see Appendix A for details), the concepts of fuzzy ar1

"fuzzy" are not compatible here.



Manes considers the set of truth distributions 1 = T(fTO , F} ) , where T ( not

to be confused with the function T ) and Fo  are fixed values representing truth component

and falsehood component, respectively. Alternatively, Manes could have pvnzidered the more

standard T(4[To ) , or pernaps expande-d the truth indices to three or more sucn as in

T( T , F0 , M ) , where M is some intermediate truth index such as "rnaybe".
0

In addition, Manes , defines "fuzzy" theory mappings, quotients, canonical subtheories,.

requiring commutivity for all relevant arguments and functions. For example, a "fuzzy" abstrac

n-ary operator is defined as an n-ary operator ( on the Cartesian product of generalized

distribution spaces) which com=utes with all mappings arising from the extension operation

Because of this restriction, it is shown (Manes' Theorem 3.3) that any such operator ma; be

always identified with the operator (#(q))(p) , for some fixed p-cT(1l,..,nj) as a function

of q = (qJ) ;j=l qjE T(X) , j=l,..,n. Similarly, a "fuzzy" homomorphlsm C :T(X) ---* T(Y)

is characterized by its ability to commute with all abstract n-ary operators. This is equi-

valent (see Manes' Theorem 4.l) to the equation

: # o e(X)) ; all X

Closely related to the above, it is shown that = (v ) is always a "fuzzy"

homomorphism between T(X) and T(Y) , when c : X---T(Y). Extending this result, it follows

that for any f:X-Y , T(f) = #(e(Y) o f) is always a homomorphism also , which respectE

identity and functiomal composition, as well as one-to-one ness and onto-ness. (This makes

T(f) as a function of f a functor . )

Zadeh Fuzzy Set Theory Example

T(f) (A) = sup C A(x)) = k(A); for any f:X---)y and A e T(X)

Thus T(f) is the basic fuzzification of functions f,

Finitely Discrete Probability Theory Example

(T(f))(p) = p(x) = probability function of r.v. f(VF) , where V has probability

x f-l(.)

function p.



Manes extends the idea of the relationship or compatibility of an ordinary set with

a generalized distribution , and in turn the relationship between two generalized distributions

as follows

S,(Sp) 4= (T( gS ))(p) ,

where

d
s #=e( To,F03 )o ) (X
s(X)  fT O  , iff xES

=' (x) T for any S 1 X ;p FT(X)
SF , iff x6S

es (# q)lX( w*' ,q)) p) ; all p,q E T(X)

noting the relation

Aox ((e(X)(x),q) dn X (& xq) ; all q C T(X) , xC X,

tx

These relationships reduce to quite familiar ones for fuzzy set and probability theorries:

Zadeh Fuzzy Set Theory Example

( &X(%'A ,%~B ))(TO) = sup min (%Ax),B(x))) -xhX) OBg) X C- Y

(,@X( 4 A ' B ))(F) = sup min A(x), (%(y)))G'6x( xEX

YY

(d:Q (S,4A ))(TO) = upV(?(x))
X x S A

(C4.(S, -A ))(Fo) = sup (J^(x)) ; all fuzzy subsets A of X , B of Y
x S

Finitely Discrete Probability Theory Example

-x~p, q) = Zp(x)'q(x) = (V =W

x X

clt(S, ) = Zp(x) = Pr(Vy S) ; all probability functions pq ovcr X

xe S
which are finitely discrete , where r.v. Y corresponds to p and V&rto q.



Define the imbedding of true and that of false in the distribution space Xo

as d d
T1 = ( e( jTo,Foj ))(T) ; ( e( JTo,FO3))(F0 )

Then define the following properties which "fuzzy" theories may or may not possess:

A theory is anti-reflexive iff Ix(p, p) = T1  implies that p = (e(X))(x) ; a~l

pET(X) , xEX , X arbitrary

A theory is faithful iff &( , p) as a function of p is one-one and onto.

A theory is propositionally complete iff for any p,q T(X) , p#q , there exists a

separating homomorphism #(') , for some d: X--xo ,i.e.(#cfrt(#(d ))(q)

A theory is consistent iff for any f,g: X---,Y , with f#g , T(f) 4 T(g) , equivalent.:

ly, e(X): X---T(X) is a one-one function.

Summary of theorems and results shown by Manes fbr the above properties.

(1) All faithful theories are propositionally complete.

(2) Except for twQ degenerate cases of no interest, all theories must be consistent.

(3) Every theory has a largest (canonical) subtheory with crisp points ,i.e., T( j x3 ) con-

sists of exactly one generalized distribution for any x EX arbitrary, equivalently,

SM(X,p) = T for all pE T(X) and xEX where T is vtisociated with the suhtheory,X ~ 1
3

For the Zadeh fuzzy set theory example, this condition is equivalent to the class of

all fuzzy subsets of X which have supremum of their membership function being 1.

lir the Finitely discrete probability theory example , T(X) itself has crisp points.

(4, Both examples (Zadeh's fuzzy set theory and finitely discrete probability theory)

possess all f' r theory properties defined above.

Generalization of "fvzzy" theury ht,,romorphisms and. tne operator # to multivariate settings

and relationships to joint and independent generalized dis bributions.

An n-homomorphism relative to a theory is a mapping F : T(X 1 )X .... X T(Xn) - T(Y)

such that ( V T(x)) separately ( all other spaces fixed) is a homomorphism for the theory,

j=l,..,n.
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The space of all joint generalized distributions with respect to X and Y ia T(XX Y).

For any p T(X) and qCT(Y) ,

and ( FL(I(V( (e(XXY))(x,.))q)

2

are the only two ways to minimally extend p and q into a joint generalized distribution over

X and Y .

Theorem A(Manes, Theorem 5.7 and related material)

(1) 1 = r 2  , for all pQT(X) and all qT(Y) , denoting the common value mapping r ,

and is a 2-homomorphismwith respect to the theory)which extends e(XXY) uniquely

iff -Fr C: X, X ... Xn - T(Y) , there is a unique extension map

T(X) ... X T(Xn)-*T(Y) , noting that for n=l, Q(= #(o , for all possible

iff the abstract n-ary operators induced by p and q commute with respect to composition

(2)For any -commutative theory, i.e., a theory in which any of the equivalences in (1) are

valiO , the operator eqX is symmetric in its arguments.

(3) For any commutative theory, having crisp points is equivalent to P being a one-one mapping

(4) Both Zadeh's fuzzy set theory and finitely discrete probability theory are commutative

theories.

The above theorem motivates the deigntion of P as the independent joint distribution

forming mapping

Zadeh Fuzzy Set Theory Example.

OA, PB)= min( 4)A, 4B) (pointwise)

0() = sup (min(A(xl) ,4(x 2 ),((xlx 2)) (pointwise) all fuzzy subsets
xjEXj ,

j=l,2

A of X , B of X2, and ell c X X X2 - T(Y) ; XI , X2 , Y arbitrary spaces.



Finitely Discrete Probability Eheory E

j I (p,q) = p-q

(p,q) = x, ( p(x 1 )q(x 2 ) c,((xlx2)) (Po tWIse)
(xi re j
(=1,2

= (V 1 'V2 )
where r.v. vlcorresponds to p and r.v.V2 corresponds to q , the two r.v.'s being statis-

tically independent; for all pT( qCT(V , o( -,,X 2 -- T(Y) z-Artrary.

Corollary to Theorem A. Generalized "Fuzzification" Principle.

Suppose the "fuzzy" theory under consideration is a commutative one. Let

f: X X .. X -4 Y be arbitrary. Then , using the notation of Theorem A,

d

e(Y)ef ):.T(Xl) X ".XT(Xn) - T(Y) is an n-homomorphism relative to the theory

which is the unique extension of e(Y)vf and is also called , by definition, the a-homomor-

phic extension of f. Note that if n=l, then = -#(e(Yof) . f is also the "fuzzification"of

f. U

Let a theory be commutative and as a special case of the above corollary, let

f: 1TO,FOj X .X JTo,Fj - oiTo,Fol be an arbitrary r.-ary ordinary truth table functidn

at logical operator. Then f is called the "fuzzification" of operator f. Also, define the

"fuzz1fied" Boolean logic associated with the given theory as ( o , H) , where H is the set

of all possible "fuzzifications" of n-ary logical operators.

Zadeh's Fuzzy Set Theory Example.

For any n-ary logical operator f and any tI ,..,tnE o

(f(tl,..tn))(•) = sup min(tl(xl),..,tn(xn))
X]i." "Xn
C- f-(}

In particular:

-'27-
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For the or operator or: Yo X. , where or(To,T0 )4or(T0,Fo)=

or(Fo,To) T and or(Fo,F0 )IF0 , for all t1 t2 C X 0

(o?(t1 ,t2 ))( 0 max( min(tl(To)t 2 (To)),min(tl(To),t 2 (Fo)),min(tI(Fo),t2 (To))))

(or(t 1 ,t 2 ))(Fo) = min( tl(Fo0 ,t 2 (Fo)).

For the operator & , X . Xo I where &(T ,To 0--To and &(To,F0 )= &(F ,To)

= &(Fo,Fo) = F for all t I ,t 2 C Co I

(&(tl.1t 2 ) )(To  = min(tl(To),t 2(To0))

( (t~t2)(Fo= max(min(tl(To)'t2(Fo)),min(tl(Fo),t (To ) ),m in (tl (F o ) It2 (F O ) "

I , hr o(O4F and not(FO)-T °

For the negation operator not: Io-- o where and(notFo

for all t G o ,

(ot(t))(T ) = t(Fo) and (ot(t))(Fo) = t(To)

Finitely Discrete Probability Theory Example.

For any n-ary logical operator f and any tl,..,t n £,o '

(f(tl'..,tn))(')= L(tl(Xl)--"t(Xn ) )

In particular:

For the operator or (as defined earlier) , for all tl,t 2 E o
or probsum(tlt 2 ) (pointwise)

For the operator & (as defined earlier), for all tt 2  0

(-(tl,t 2 )) = tl • t2  (pointwise)

For the operator not (as defined eaL'Iier), for all t

fi-ot(t) = 1-t (pointwise)



6. ISSUES AIS I, -IN MODELItiG UNCERTAIMIES / CONCLUSIOH

This section is loosely held together be the commonality of posing questions ( with

not tco many answers at present, unfortunately) concerning the natural questions that

arise -between natural language/semaniics,linguistics , fuzzy set theory and probability

theory as approaches to the modeling of uncertainty.

Dubois & Prade I1I,255-2 6 4)have devoted a section of their compendium on the develop-

ments in fuzzy set theory and its applications to the modeling of fuzzy set membership

functions. A number of basic approaches are considered, with some emphasis-as should be-

on the empirical aspects aspects of the modeling. In this vein, it should be added that the

weak homomorphic theory developed for example in Appendix A shows that the idea of counting

percentage of times a fixed value possesses a given attribute - which is interpreted as the

evaluation of the corresponding fuzzy set membership function- as is typically done by survey

sampling of individuals, may be identified with the empirical one point coverage pro bGility

function generated by a random sample of random sets that are identically distributed

a are weak equivalent to the attribute or fuzzy set in question. However, the following issue

has not been sufficiently emphasized: In classical statistical techniques, modeling of

distribution functions is often carried out in two basic steps. First, a parameterized family

of distributions is chosen. This may be for reasons of invariance, shape, use of Central Linit

Theory, or via trends of earlier empirical evidence. The family is chosen so that it reason-

ably contains the viable alternatives for the true distibution and its size is adjusted accord-

ingly. Then empirical data or restictions are imposed-such as tunbiasedness,sufficiency,minima]

risk with respect to some choice of loss function on errors and estimates of the unknown

parameter value or outcowe - yielding either a unique value or a reduced set of values where

the unknown parameter lies. This leads to the corclu !on that the same procedure should be

applied to other approaches to uncertainty modeling, where ditribution, in now a generalized

or different sense from the classical probabilistic one, play a key role in the theory.

Examples of this are fuzzy set theory, with its fuzzy set membership functions , the first

topic mentioned above, flou set theory with its index functions relative te the individual



sets forming a given flou set, and topclogical neighborhood theory with its neighborhood

filters. (See Manes' uaifted tr2atment of these theories as presented in [221or tectfin S

of this paper.)

Other analogues can be established between fuzzy set theory as applied to parameter

estimation and classical statistical estimation theory. For example, one can assije a

linear regression model is valid connecting observations with an unknown parameter vector,

with no specification of the relevant distributions involved-at least, at first. Then least

squares, or more generally, a least weighted functional defined on the potential errors be-

tween observations and possible values of the parameter in question , is derived, yielding

a reasonable value of the unknown parameter as a function of the observations , i.e., a

statistic, if distributional assumptions were to be made. Then if a fuzzy set modeling

approach is taken, the observations Could be assumed to be generated from corresponding

fuzzy set membership functions , ylelding in turn through the standard fuzzification of an

Ordinary function (see Goodman [211 or Dubois and Prade [III for further details on the

fuzzification or equivalently the obtaining of the membership function of an: ordinary

function operating over a space on which fuzzy subsets are also defined ) the fuzzy set

membership function of the "statistic". in turn this leads in a natural way to confidence

sets for the unknown parameter vector, by for example considering the level sets associated

with the n4'orementioned membership function. (See Goodman [i2].e. .) for a related technique.

A forthcoming publication will consider this problem in more detail.) Asymptotic properties

of these(fuzzy ce.)estimators may also be obtained as the sample sizes are increased. Bayesian

techniques may also be developed involving conditional distributions in the fuzzy set sense

(Se cociman [37] for development of these concepts for general fuzzy set systems. See also

Dishkant's related work 42] .)

Is fuzzy set theory rich enough to model reasonably natural language, or : an it be

extended or modified- such as by considering,via the weak homomorphic representation theory

of random sets ( see Appendix A), two point , and in general,multip] point coverage funct cflS .

-30-



Can we express all human (or other?) ideas or concepts. rr terms of natural language? Can these

ideas be reduced to primtives and operators involving them? Can a mathematical/logical

procedure be developed for describing and analyzing natural language in a unified way,

including attributes and operators? What quantitative relationships can be established between

prelinguistic ideas and natural language? How sensitive or robust and how subjective are

concepts translated into natural language with respect to the particular language chosen

(1'rnorf-Sapir hypothesis is involved, see [433 ), individual , and medium used? Is there

always inherent ambiguity in modeling a given concept in natural language? Can we make use of

the enormous body of literature available irhich treats formal linguistics and semantics to

develop a systematic unified framework directly relatable to multivalued logic theory? In a

related manner, we may ask if a unified approach to uncertainty modcls ( h la Manes (see

section1 5 ) , for example) and to natural language would be possible? Can the efficiency

of the various approaches to modeling uncertainty be meaningfully compared?
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